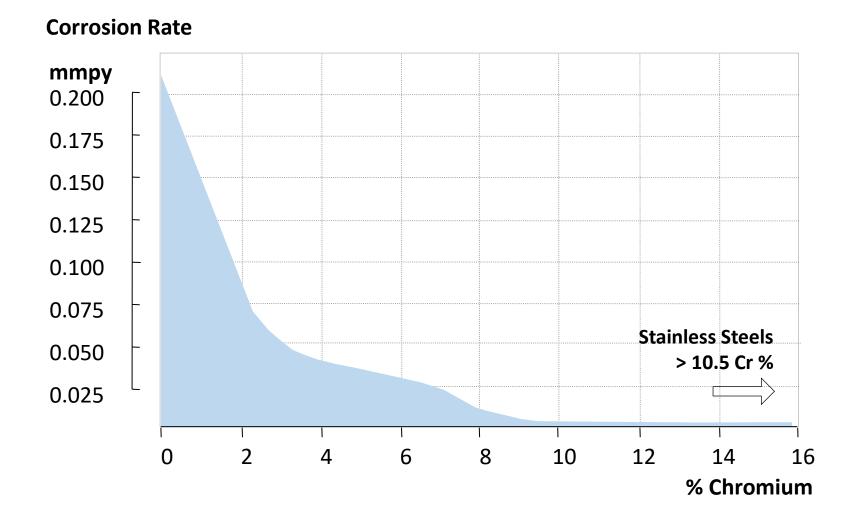
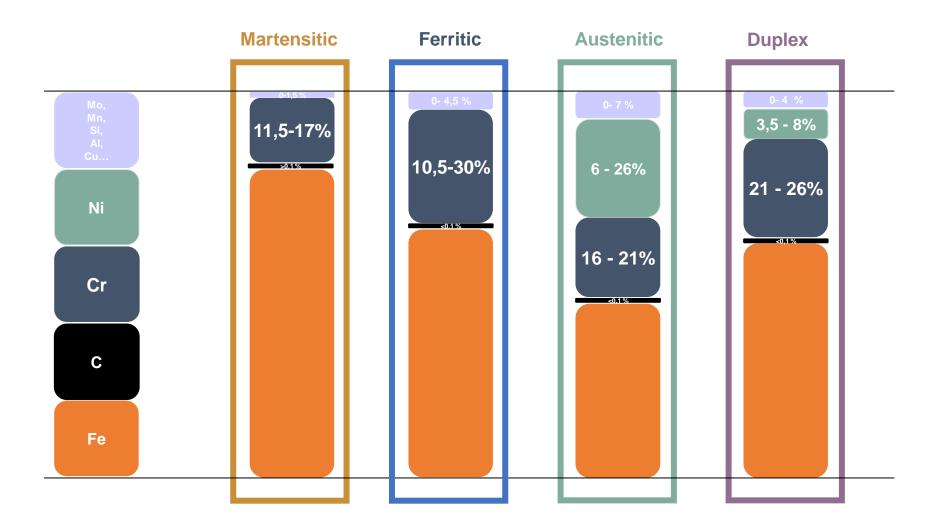
What is Stainless Steel?

PUREST


http://www.steel-stainless.org/media/1533/dmsss4french-complete.pdf

What is stainless steel?


- Stainless steel is a corrosion-resistant iron alloys that contains a minimum of 10.5% chromium (Cr).
- Other present alloying elements:
 - Carbon (C),
 - Nickel (Ni),
 - Manganese (Mn),
 - Molybdenum (Mo),
 - Copper (Cu),

- Silicon (Si),
- Sulphur (S),
- Phosphorus (P),
- Nitrogen (N).

Effect of Chromium Content on Atmospheric Corrosion Resistance

Chemical composition of stainless steel



Passive film

The **natural** formation of a **passive surface film** is the key to the **corrosion resistance** of stainless steels.

Properties of the passive film:

- Chromium Rich Oxide
- Very thin, ~ 20-30 Ångströms (2-3 nm)
- Extremely adherent
- Passive
- Self Repairing (within minutes)

Why use stainless steel in structures?

- Where you need corrosion resistance and long life combined with strength
- Where maintenance and/or inspection is difficult
- Where you need attractive metallic surface
- Good toughness at very low temperatures
- Hygienic properties
- Non-magnetic properties

The **austenitic** and **duplex** stainless steels are **most widely used in construction**

Duplex compared to austenitic steels

Duplex stainless steels have:

- a mixed microstructure of ferrite & austenite
- equivalent corrosion resistance to austenitics
- higher strength
- improved cost, by reduction in Ni (and Mo) content (lean grades)

Group	Strength	Ductility	Magnetic	Weldable	Corrosion	Formability
Austenitic		$\bullet \bullet \bullet$	×	\checkmark	••	$\bullet \bullet \bullet$
Duplex			\checkmark	\checkmark		

Duplex compared to austenitic steels

Cr – Ni (Typically 304 /4301) Cr – Ni – Mo (Typically 316/4401)

Best known and most used today

Non Magnetic

Physical prop

Corrosion

Mech. prop.

- Higher expansion coefficient (compared to C-Steels)
- Low heat conductivity
- Very good corrosion resistance, increases with alloy content
- ...but can be susceptible to SCC in hot chloride environments (e.g. swimming pools)
- Very high ductility and impact resistance at all (including very low) temperatures
- Strength can be increased by cold working (but not by heat treatment)
- Very good fire resistance
- Very good cold and hot forming properties (ductility, elongation)
- (ductility, elongation) - Easy to weld (TIG, MIG)

Cr – Ni (Typically /4362) Cr – Ni – Mo (Typically /4462)

Best combination of corrosion resistance and mechanical properties Magnetic Expansion coefficient (intermediate between ferritic and austenitic) Low heat conductivity - Excellent corrosion resistance, increases with alloy content Insensitive to SCC High strength, high ductility Strength can be increased by cold working (but not by heat treatment) Good cold and hot forming properties (ductility, elongation)

- Weldable (TIG, MIG)
- PUREST: Promotion of new Eurocode rules for structural stainless steels

RFCS Dissemination Project 709600

Designation - Grades

The designation systems adopted in EN 10088 are the European steel number and a steel name. For example, grade 304L has a steel number 1.4307, where:

1.	43	07
Denotes steel	Denotes one group of stainless steels	Individual grade identification

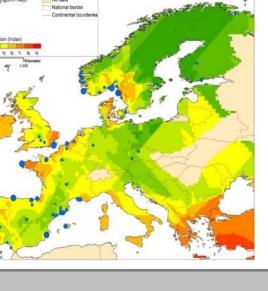
The groups of stainless steel are denoted in EN 10027-2 as:

- 1.40XX: Stainless steel with Ni < 2,5 % without Mo, Nb and Ti
- 1.41XX: Stainless steel with Ni < 2,5 % and Mo but without Nb and Ti
- 1.43XX: Stainless steel with Ni \geq 2,5 % but without Mo, Nb and Ti
- 1.44XX: Stainless steel with Ni \geq 2,5 %, and Mo but without Nb and Ti
- 1.45XX: Stainless steels with special additions
- 1.46XX: Chemical resistant and high temperature Ni grades

- New procedure introduced in Annex A of EN 1993-1-4:A1
 2015 (and included in section 3.5 of Design Manual)
- Avoid confusion with huge choice of grades
- Pan-European (wide range of environments)
- Conservative, robust, unambiguous
- Based on many years experience with similar procedures in German National Approval Z-30.3-6 and tools developed by IMOA and Arup
- Calibrated against existing structures

Corrosion Resistance Factor (CRF) For the environment Corrosion Resistance Class (CRC)

Designer does **not** need to choose the specific alloy


- Corrosion Resistance Factor (CRF) for the environment:

CRF = F1 + F2 + F3

- In which:
 - F1 = Risk of exposure to chlorides from salt water or de-icing salts
 - F2 = Risk of exposure to sulphur dioxide
 - F3 = Cleaning regime or exposure to washing by rain

- practical experience with existing structures
- exposure trials
- research on corrosion mapping

	<i>F</i> ₁ Risk of exposure to chlo	orides from salt water or de-icing salts			
NOTE M is distance from the sea and S is distance from roads with de-icing salts.					
1	Internally controlled environme	ent			
0	Low risk of exposure	M > 10 km or S > 0,1 km			
-3	Medium risk of exposure	1 km < M \leq 10 km or 0,01 km < S \leq 0,1 km			
-7	High risk of exposure	$0,25 \text{ km} < M \le 1 \text{ km} \text{ or } S \le 0,01 \text{ km}$			
-10	Very high risk of exposure	Road tunnels where de-icing salt is used or where vehicles might carry de-icing salt into the tunnel			
	Very high risk of exposure	M ≤ 0,25 km			
-10		North Sea coast of Germany and all Baltic coastal areas			
	Very high risk of exposure	M ≤ 0,25 km			
-15		Atlantic coast line of Portugal, Spain and France. English Channel and North Sea Coastline of UK, France, Belgium, Netherlands and Southern Sweden. All other coastal areas of UK, Norway, Denmark and Ireland. Mediterranean Coast			

F_2 Risk of exposure to sulphur dioxide

NOTE For European coastal environments the sulphur dioxide concentration is usually low. For inland environments the sulphur dioxide concentration is either low or medium. The high classification is unusual and associated with particularly heavy industrial locations or specific environments such as road tunnels. Sulphur dioxide concentration may be evaluated according to the method in ISO 9225.

0	Low risk of exposure	<10 µg/m ³ average gas concentration
-5	Medium risk of exposure	10 - 90 μ g/m ³ average gas concentration
-10	High risk of exposure	90 - 250 μg/m ³ average gas concentration

F ₃ Cleaning regime or expos	ure to washing by rain (if <i>F</i>	$_1+{F}_2 \ge 0$, then ${F}_3$ =0) $_1$
--	-------------------------------------	--

- 0 Fully exposed to washing by rain
- -2 Specified cleaning regime
- -7 No washing by rain or no specified cleaning

NOTE If the component is to be regularly inspected for any signs of corrosion and cleaned, this should be made clear to the user in written form. The inspection, cleaning method and frequency should be specified. The more frequently cleaning is carried out, the greater the benefit. The frequency should not be less than every 3 months. Where cleaning is specified it should apply to all parts of the structure, and not just those easily accessible and visible.

Corrosion Resistance Factor (CRF) for the environment:

CRF = F1 + F2 + F3

More negative values of CRF require more resistant alloy.

Corrosion Resistance Factor	Corrosion Resistance Class
(CRF)	(CRC)
CRF = 1	I
0 ≥ CRF > -7	II
-7 ≥ CRF > -15	111
-15 ≥ CRF ≥ -20	IV
CRF < -20	V

Increasing alloy additions, i.e. more corrosion resistant

					-			
	Corrosion resis							
	I	II		IV	V			
	1.4003	1.4301	1.4401	1.4439	1.4565			
	1.4016	1.4307	1.4404	1.4539	1.4529			
	1.4512	1.4311	1.4435	1.4462	1.4547			
		1.4541	1.4571		1.4410			
		1.4318	1.4429		1.4501			
		1.4306	1.4432		1.4507			
Desis formities		1.4567	1.4578					
Basic ferritics		1.4482	1.4662					
Basic austenitics			1.4362					
Mo austenitics			1.4062					
			1.4162					
Lean duplexes	NOTE 1 The Corrosion Resistance Classes are only intended for u							
	this grade selection procedure and are only applicable to structural							
Higher alloy/super	applications.							
austenitics	NOTE 2 A g	rade from a hig	ner class may be	used in place of	the class			
Duplex/super duplex	NOTE 2 A grade from a higher class may be used in place of the class indicated by the CRF.							

Relates to the selection of materials **for structural applications** and does not take account of:

- grade/product availability
- surface finish requirements
- methods of joining/connecting

Not intended for architectural applications such as facades

Procedure assumes the service environment:

- near neutral pH range (pH 4 to 10)
- not part of a chemical plant/ process
- not permanently/intermittently immersed in seawater

If these conditions are not met, specialist advice should be sought

Grade selection procedure – Special cases: swimming pools

- Highly corrosive environments
- Immersion in pool water is **not** a problem
- Do not use standard austenitics for load-bearing members which cannot be cleaned regularly - they may fail by stress corrosion cracking (SCC)

Load-bearing parts in swimming pool atmospheres	Corrosion resistance class CRC
Load-bearing members which are regularly	CRC III or CRC IV
cleaned 1	(excluding 1.4162, 1.4662, 1.4362, 1.4062)
Load-bearing members which are not regularly	CRC V
cleaned	(excluding 1.4410, 1.4501 and 1.4507)
All fixings, fasteners and threaded parts	CRC V
	(excluding 1.4410, 1.4501 and 1.4507)

Note: If the component is to be regularly inspected for any signs of corrosion and cleaned, this should be made clear to the user in written form. The inspection, cleaning method and frequency should be specified. The more frequently cleaning is carried out, the greater the benefit. The frequency should not be less than every week. Where cleaning is specified, it should apply to all parts of the structure, and not just those easily accessible and visible.

Overview of Structural Applications of stainless steel

PUREST

Structural members

"The Gap" Western Australia

© David Iles

Stainless steel columns, entrance canopy at Seven World Trade Center, New York © Catherine Houska

Structural members – subway entrances

New York © Catherine Houska

Washington DC © Graham Gedge

Bilbao © Bassam Burgan

Industrial structures



Skid for offshore regasification plant

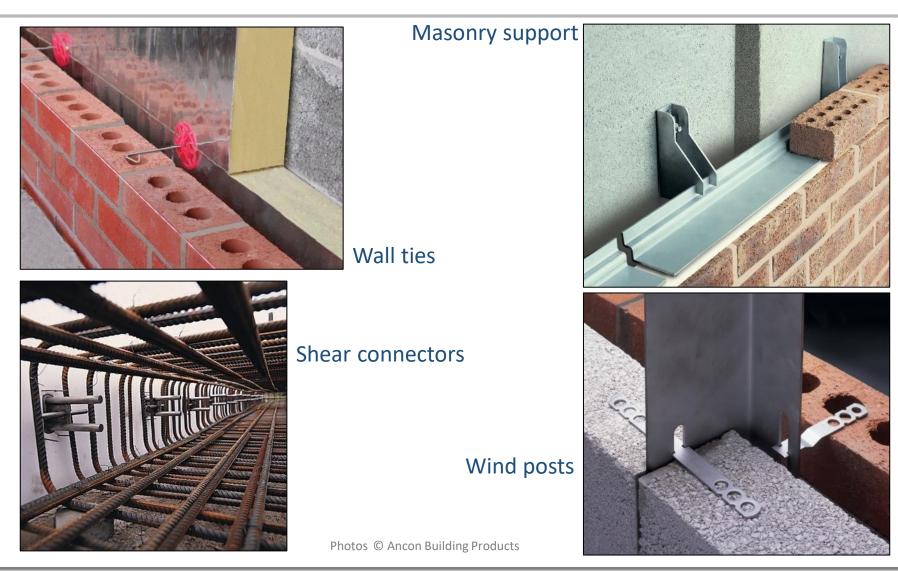
© Montanstahl

Access walkways and ladders

© Ancon Building Products

Walkway in pulp and paper plant © Outokumpu

Bridges



Cala Galdana Bridge, Menorca

© Pedelta

Helix Bridge, Singapore

Masonry support and fixings

Tunnels...

... require highly durable materials due to corrosive environment, high maintenance costs & severe consequences of a structural failure or fire

Stainless framework supports a stainless steel lining in Glasgow's Clyde Tunnel due to good retention of mech. prop. in a fire

© Ancon Building Products

PUREST: Promotion of new Eurocode rules for structural stainless steels RFCS Dissemination Project 709600 Barbara.rossi@new.ox.ac.uk

Stainless steel reinforcing bar

Benefits

- Longer design life of structure (>100 years)
- Reduced concrete cover
 - Reduced deck weight
 - Reduced substructure

Applications

 Highway bridges, overpasses, tunnels, car parks, wharfs, piers, coastal buildings, historical building restorations, buildings with sensitive electronic equipment

©Ancon Building Products

Design rules for stainless steel

PUREST

Eurocode 3: Part 1 (EN 1993-1)

Eurocode 3: Part 1 (EN 1993-1)

- EN 1993-1-1 General rules and rules for buildings
- EN 1993-1-2 Structural fire design
- EN 1993-1-3 Cold-formed members and sheeting
- EN 1993-1-4 Stainless steels + A1:2015 + A2:2020
- EN 1993-1-5 Plated structural elements
- EN 1993-1-6 Strength and stability of shell structures
- EN 1993-1-7 Strength/stability of planar plated structures transversely loaded
- EN 1993-1-8 Design of Joints
- EN 1993-1-9 Fatigue strength of steel structures
- EN 1993-1-10 Selection of steel for fracture toughness and through thickness properties
- EN 1993-1-11 Design of structures with tension components
- EN 1993-1-12 Supplementary rules for high strength steels

Eurocode 3: Part 1 (EN 1993-1)

EN 1993-1-1 General rules and rules for buildings
EN 1993 <u>-1-2 Structural fire design</u>
EN 1993 Eurocode 3 Part 1.4: 2006 + A1:2015 + A2:2020
Design of steel structures. Supplementary rules for stainless steels EN 1993
EN 1993 –Follow same basic approach as carbon steel
EN 1993 –Use same rules as for carbon steel for tension members & restrained beams
–Modifies and supplements rules for carbon steel where necessary
–Applicable to:
EN 1993 –Welded, hot rolled & cold formed members
EN 1993 –Austenitic, duplex (and ferritic) grades
EN 1993 –Applies to buildings, bridges, etc
FN 1993
En 1999 I II Design of stractares with tension components

EN 1993-1-12 Supplementary rules for high strength steels

Design Manual

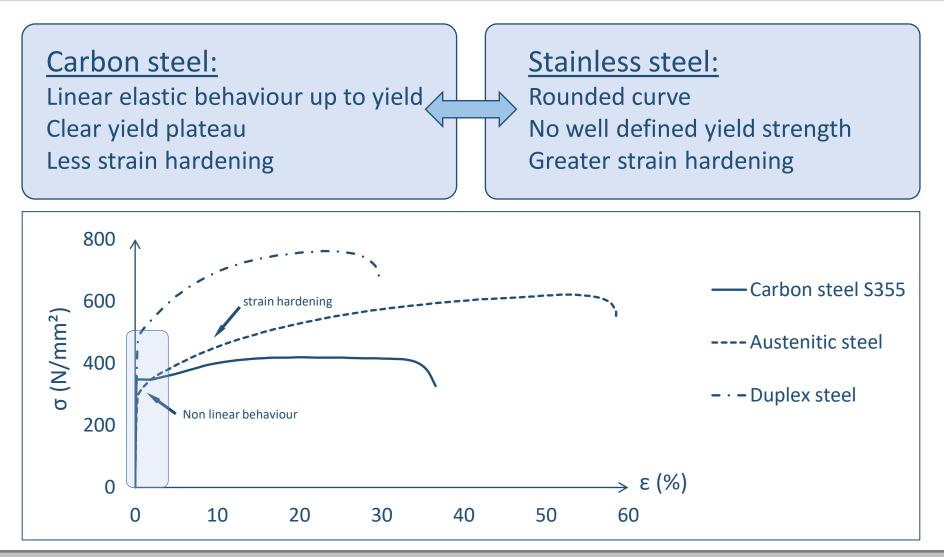
- Guidance
- Design Examples
- Commentary
- Software and apps

History:

- 1st Edition: 1993
- 2nd Edition: 2002
- 3rd Edition: 2006
- 4th Edition: 2017

DESIGN MANUAL FOR STRUCTURAL STAINLESS STEEL

4TH EDITION

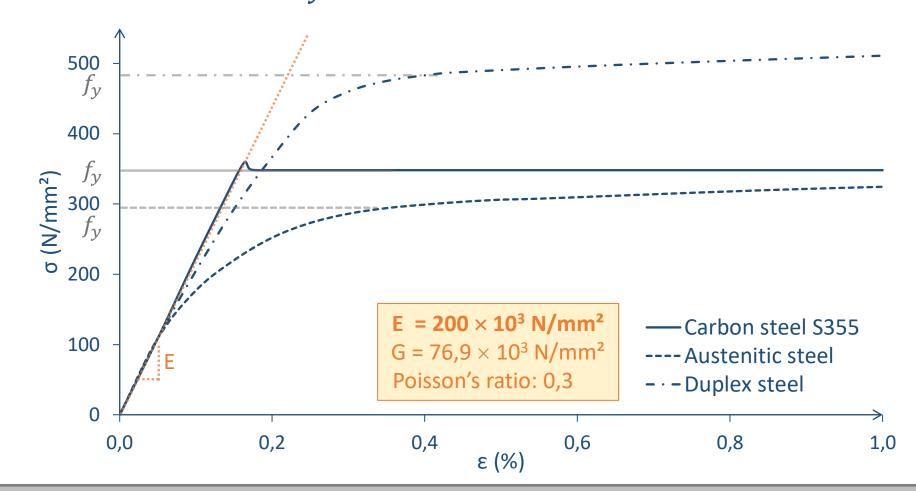

Safety factor

- Safety factors:

- γ_{M0} = 1,1 instead of 1,0
- γ_{M1} = 1,1 instead of 1,0
- $-\gamma_{M2} = 1,25$

mainly due to variability of material properties within families

Stress-strain curve

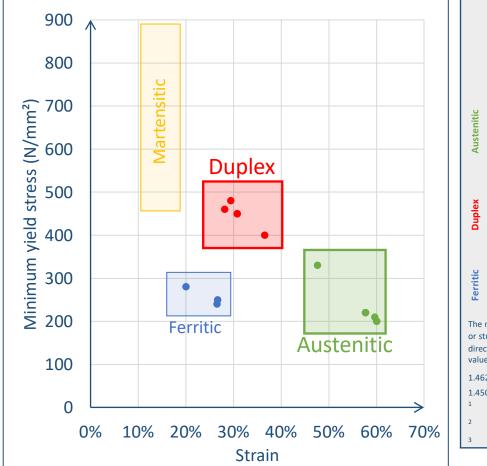


PUREST: Promotion of new Eurocode rules for structural stainless steels

RFCS Dissemination Project 709600

Stress-strain curve

– Yield strength f_{v} : 0,2% proof strength



PUREST: Promotion of new Eurocode rules for structural stainless steels

RFCS Dissemination Project 709600

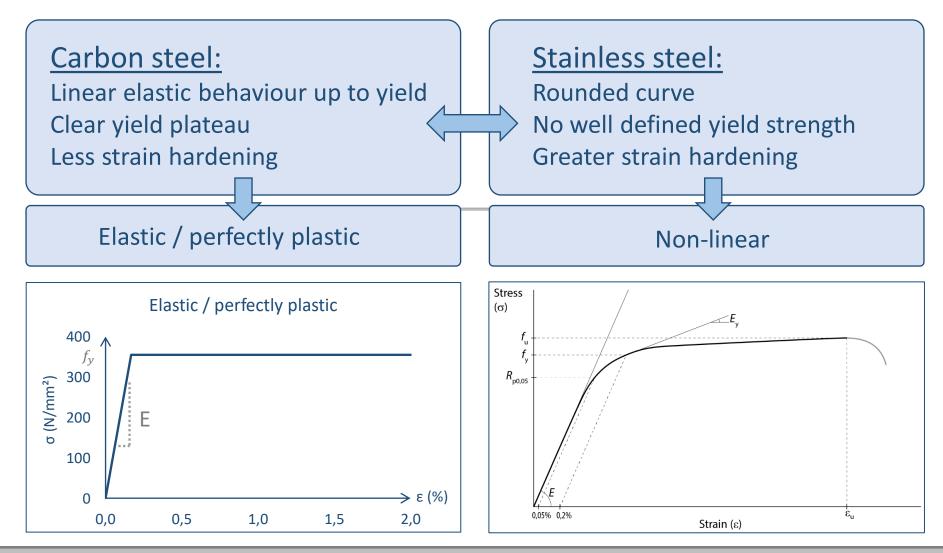
Mechanical characteristics

-Yield & ultimate strength

		Product form							
Grade		Cold rolle	Cold rolled strip		Hot rolled strip Hot ro Nominal thickness t		ed plate	Bars, rods & sections	
t≤8 mm t≤13,5 mm						250 mm			
		f _v	fu	f _v	f _u	f _v	fu	f _v	f _u
		5	-		-	5	-	2	
	1.4301	230	540	210	520	210	520	190	500
J	1.4307	220	520	200	520	200	500	175	500
Austenitic	1.4318	350	650	330	650	330	630	-	-
ste	1.4401	240	530	220	530	220	520	200	500
Aus	1.4404	240	530	220	530	220	520	200	500
	1.4541	220	520	200	520	200	500	190	500
	1.4571	240	540	220	540	220	520	200	500
	1.4062	530 ¹	700 ¹	480 ²	680 ²	450	650	380 ³	650 ³
	1.4162	530 ¹	700 ¹	480 ²	680 ²	450	650	450 ³	650 ³
Duplex	1.4362	450	650	400	650	400	630	400 ³	600 ³
1 no	1.4462	500	700	460	700	460	640	450 ³	650 ³
-	1.4482	500 ¹	700 ¹	480 ²	660 ²	450	650	400 ³	650 ³
	1.4662	550 ¹	750 ¹	550 ⁴	750 ⁴	480	680	450 ³	650 ³
	1.4003	280	450	280	450	250 ⁵	450 ⁵	260 ⁶	450 ⁶
<u>.</u>	1.4016	260	450	240	450	240 ⁵	430 ⁵	240 ⁶	400 ⁶
Ferritic	1.4509	230	430	-	-		-	200 7	420 ³
Fe	1.4521	300	420	280	400	280 ⁸	420 ⁸	-	-
	1.4621	230 ⁵	400 ⁹	230 ⁸	400 ⁸	-	-	240 ⁷	420 ⁷
The n	ominal values	of f_v and f_u g	iven in this t	able may be	used in desigr	without taki	ng special a	ccount of a	nisotropy
	ain hardening								
	ion. This table					~			
values.									

1.4621, 1.4482, 1.4062 and 1.4662 are only covered in EN 10088-2 and 3.

1.4509 bar is only covered in EN 10088-3.


1	$t \le$ 6,4 mm	4	$t \leq 13 \text{ mm}$	7	t or ϕ \leq 50 mm
2	$t \leq 10 \text{ mm}$	5	$t \leq 25 \text{ mm}$	8	$t \leq 12 \text{ mm}$
3	t or $\phi \leq$ 160 mm	6	t or ϕ \leq 100 mm	9	$t \le 6 mm$

Tabel 2.2: Nominal values of the yield strength f_y and the ultimate strength f_u for common stainless steels to EN 10088 (N/mm²)

PUREST: Promotion of new Eurocode rules for structural stainless steels

RFCS Dissemination Project 709600

Material model

PUREST: Promotion of new Eurocode rules for structural stainless steels RFCS Dissemination Project 709600

Barbara.rossi@new.ox.ac.uk

Ramberg-Osgood material model

	$\varepsilon = \begin{cases} \frac{\sigma}{E} + 0,002 \left(\frac{\sigma}{f_y}\right)^n \text{ for } \sigma \le f_y \\ 0.002 + \frac{f_y}{E} + \frac{\sigma - f_y}{E_y} + \varepsilon_u \left(\frac{\sigma - f_y}{f_u - f_y}\right)^n \end{cases}$	$\int_{y}^{m} for f_{y} < \sigma \le f_{u}$
rameter	EN 1993-1-4, old version	Design Manual And in EN 1993-1-14
E_y	$\frac{E}{1+0,002n\frac{E}{f_y}}$	$\frac{E}{1+0.002n\frac{E}{f_{\rm y}}}$
Е _и	$1 - \frac{f_y}{f_u}$	$\begin{cases} 1 - \frac{f_y}{f_u} \text{ for austenitic and duplex} \\ 0,6 \left(1 - \frac{f_y}{f_u}\right) \text{ for ferritic} \end{cases}$

	n	Table 6.5	Austenitic 7
	π	IL Table 6.5	Ferritic 14
_			Duplex 8

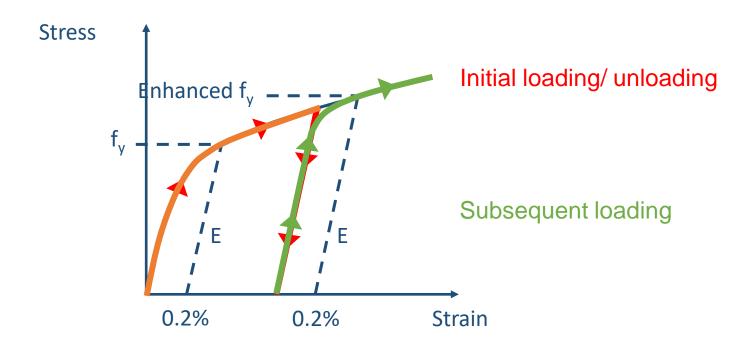
PUREST: Promotion of new Eurocode rules for structural stainless steels

 $1 + 3.5 \frac{f_y}{f_u}$

RFCS Dissemination Project 709600

Barbara.rossi@new.ox.ac.uk

m


Para

 $1 + 2,8 \frac{f_y}{f_u}$

Strength enhancement

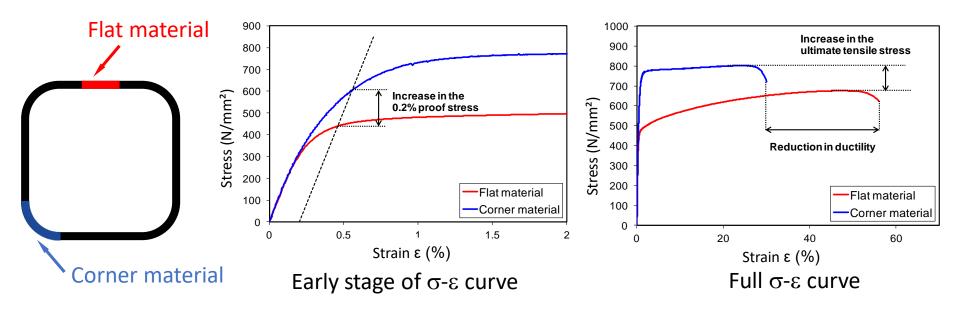
Cold working / forming occurs during:

- Forming of sheet material (at the steel mill)
- Section forming (at the fabrication shop)
- Under load (in service)

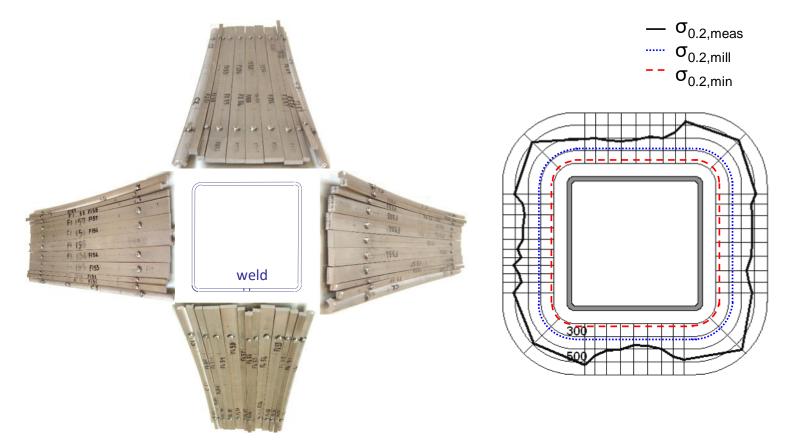
Strength enhancement – forming of sheet material

Stainless steel is available in standardised cold-worked conditions (EN 1993-1-4 and Design Manual applicable):

- CP350 (The characteristic yield strength is $f_v = 350 \text{ N/mm}^2$.)
- CP500 (The characteristic yield strength f_y is reduced from 500 to 460 N/mm² to take into account asymmetry of the cold worked material.)


	Cold worked condition					
	CPS	350	CP500			
	$f_{\rm y} (N/mm^2) \qquad f_{\rm u} (N/mm^2)^1$		$f_{\rm y}(N/mm^2)$	$f_{\rm u} (N/mm^2)^1$		
1.4301	350	600	460	650		
1.4318	2	2	460	650		
1.4541	350	600	460	650		
1.4401	350	600	460	650		
1.4571	350	600	460	650		

¹ According to EN 10088, the CP classification defines only the required 0,2 % proof strength, f_y . The steels used should have declared properties that meet the conservative tabulated values for ultimate strength, f_u , unless type testing is used to demonstrate the acceptability of lower values.


² Grade 1.4318 develops a 0,2 % proof strength of 350 N/mm² in the annealed condition; see Table 2.2.

Test data on flat and corner material from the same section show :

- an increase of f_y and f_u and;
- a reduction of ductility.

Strength enhancement during forming

Cruise, R. B. and Gardner, L. (2008). Strength enhancements induced during cold forming of stainless steel sections. Journal of Constructional Steel Research. **64(11)**, 1310-1316.

PUREST: Promotion of new Eurocode rules for structural stainless steels RFCS Dissemination Project 709600 Barbara.rossi@new.ox.ac.uk

- The benefit of strength enhancement can be introduced in calculations by replacing f_y by the enhanced average yield strength f_{ya} .
- For box sections, typical enhancements in strength of 30% in flat regions and 50% in corners can be harnessed.

Afshan, S., Rossi, B. and Gardner, L. (2013). Strength enhancements in cold-formed structural sections – Part I: Material testing. Journal of Constructional Steel Research. 83, 177-188.

Rossi, B., Afshan, S. and Gardner, L. (2013). Strength enhancements in cold-formed structural sections – Part II: Predictive models. Journal of Constructional Steel Research. **83**, 189-196.

PUREST: Promotion of new Eurocode rules for structural stainless steels RFCS Dissemination Project 709600 Barbara.rossi@new.ox.ac.uk f_{ya} can be determined by:

- For stainless steel sections formed by press braking:

$$f_{ya} = \frac{f_{yc} A_{c,pb} + f_{y} (A - A_{c,pb})}{A}$$

- For stainless steel cold rolled box sections (RHS):

$$f_{ya} = \frac{f_{yc} A_{c,rolled} + f_{yf}(A - A_{c,rolled})}{A}$$

- For stainless steel cold rolled circular hollow sections (CHS):

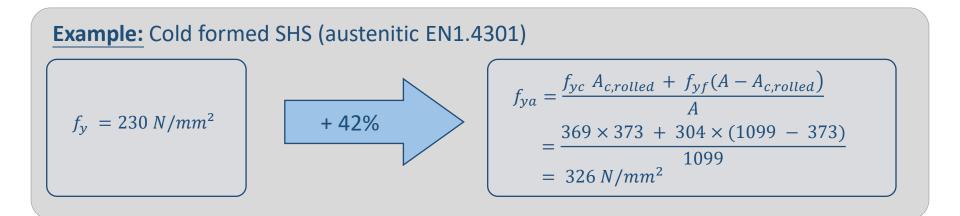
$$f_{ya} = f_{yCHS}$$

Formulas for f_{yc} , f_{yf} and f_{yCHS} :

$$\begin{split} f_{\rm yc} &= 0.85K \left(\varepsilon_{\rm c} + \varepsilon_{\rm p0,2} \right)^{n_{\rm p}} & \text{and} & f_{\rm y} \leq f_{\rm yc} \leq f_{\rm u} \\ f_{\rm yf} &= 0.85K \left(\varepsilon_{f} + \varepsilon_{\rm p0,2} \right)^{n_{\rm p}} & \text{and} & f_{\rm y} \leq f_{\rm yf} \leq f_{\rm u} \\ f_{\rm yCHS} &= 0.85K \left(\varepsilon_{\rm CHS} + \varepsilon_{\rm p0,2} \right)^{n_{\rm p}} & \text{and} & f_{\rm y} \leq f_{\rm yCHS} \leq f_{\rm u} \end{split}$$

In which:

$$\varepsilon_{c} = \frac{t}{2(2r_{i}+t)} \qquad \varepsilon_{CHS} = \frac{t}{2(d-t)} \qquad K = \frac{f_{y}}{\varepsilon_{p0,2}^{n_{p}}}$$
$$\varepsilon_{f} = \left[\frac{t}{900}\right] + \left[\frac{\pi t}{2(b+h-2t)}\right] \qquad \varepsilon_{p0,2} = 0,002 + \frac{f_{y}}{E} \qquad n_{p} = \frac{\ln(f_{y}/f_{u})}{\ln(\varepsilon_{p0,2}/\varepsilon_{u})}$$


PUREST: Promotion of new Eurocode rules for structural stainless steels RFCS Dissemination Project 709600 Barbara.rossi@new.ox.ac.uk

Determination of total corner cross-sectional area $A_{c,pb}$ and $A_{c,rolled}$ can be conducted using:

$$A_{c,pb} = \left(n_c \ \pi \frac{t}{4}\right)(2r_i + t)$$
$$A_{c,rolled} = \left(n_c \ \pi \frac{t}{4}\right)(2r_i + t) + 4n_c t^2$$

In which n_c represents the amount of 90° corners.

The enhancement arising during the fabrication of cold formed structural sections may be utilised in cross section and member design using annex B in Design Manual.

Impact of stress-strain characteristics

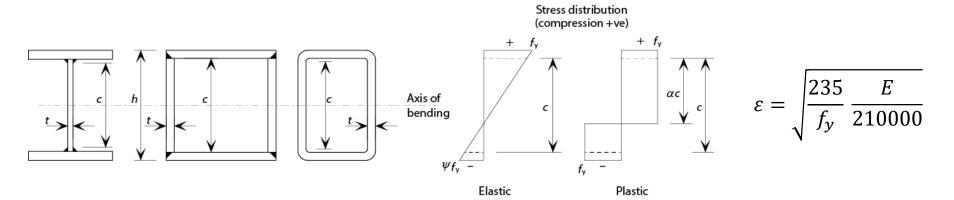
Fatigue

- The fatigue strength of stainless steel is similar to that of carbon steels.

Seismic performance

- − High ductility domain ⇒ greater hysteretic energy dissipation
- High work hardening domain ⇒ development of large & deformable plastic zones
- Stronger strain rate dependency ⇒ strain rate ↑ leads to strength ↑

But the nonlinear behaviour leads to:


- Different cross-section classification
- Different member buckling behaviour in compression and bending
- Greater deflections

Section classification & local buckling

- EN 1993-1-4 gave lower limiting width-to-thickness ratios than for carbon steel and slightly different expressions for calculating effective widths of slender elements.
- The **first** amendment of EN 1993-1-4, that was published in 2015, contains less conservative limits & effective width expressions.

Section classification & local buckling

Internal compression parts

	EC3-1-1: ca	EC3-1-1: carbon steel		EC3-1-4, old version: stainless steel		A1:2015: ss steel
Class	Bending	Compression	Bending	Compression	Bending	Compression
1	c/t ≤ 72ε	c/t ≤ 33ε	c/t ≤ 56ε	c/t ≤ 25,7ε	c/t ≤ 72ε	c/t ≤ 33ε
2	c/t ≤ 83ε	c/t ≤ 38ε	c∕t ≤ 58,2ε	c/t ≤ 26,7ε	c/t ≤ 76ε	c/t ≤ 35ε
3	c/t ≤ 124ε	c/t ≤ 42ε	c∕t ≤ 74,8ε	c/t ≤ 30,7ε	c∕t ≤ 90ε	c/t ≤ 37ε

PUREST: Promotion of new Eurocode rules for structural stainless steels RFCS Dissemination Project 709600

Barbara.rossi@new.ox.ac.uk

Section classification & local buckling

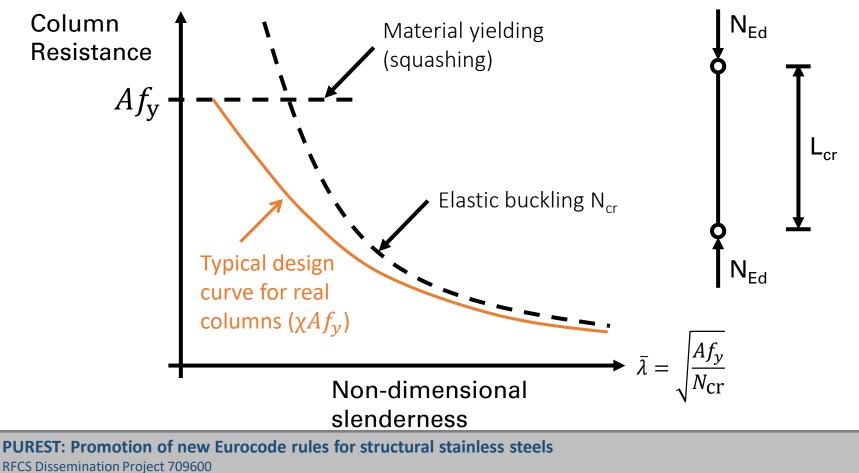
External compression parts

	$ \begin{array}{c} \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	t †		
	EC3-1-1: carbon steel		ld version: ss steel	EC3-1-4/A1:2015: stainless steel
Class	Compression	Compression Welded	Compression Cold-formed	Compression Cold-formed and welded
1	c∕t ≤ 9ε	c∕t ≤ 9ε	c/t ≤ 10ε	c∕t ≤ 9ε
2	c/t ≤ 10ε	c/t ≤ 9,4ε	c/t ≤ 10,4ε	c/t ≤ 10ε
3	c/t ≤ 14ε	c/t ≤ 11ε	c/t ≤ 11,9ε	c/t ≤ 14ε

PUREST: Promotion of new Eurocode rules for structural stainless steels

RFCS Dissemination Project 709600

Barbara.rossi@new.ox.ac.uk


Design of columns in EN 1993-1-4

- In general use **same approach** as for carbon steel i.e. **'European buckling curves**' i.e. we multiply the squash load by a reduction factor χ to get the global resistance of the column.
- But different buckling curves are used for buckling of columns and unrestrained beams (LTB)
- Ensure you use the correct f_y for the grade (minimum specified values are given in EN 10088-4 and -5)

Design of columns in EN 1993-1-4

Real column behaviour

- Two bounds: Yielding (cross-section strength) and buckling:

Barbara.rossi@new.ox.ac.uk

Column buckling

Compression buckling resistance $N_{b,Rd}$:

- Class 1, 2 and 3 cross-sections

$$N_{b,Rd} = \frac{\chi A f_y}{\gamma_{M1}}$$

- Class 4 : local buckling so effective properties should be used

$$N_{b,Rd} = \frac{\chi A_{eff} f_y}{\gamma_{M1}}$$

In which χ is the reduction factor accounting for buckling

The buckling effects may be ignored and only cross sectional checks apply if: $\bar{\lambda} \leq \bar{\lambda}_0 \text{ or } \frac{N_{Ed}}{N_{cr}} \leq \bar{\lambda}_0^2$

Column buckling

Reduction factor:

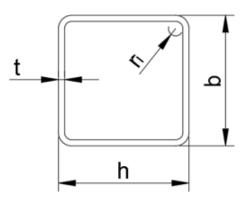
$$\chi = \frac{1}{\phi + [\phi^2 - \bar{\lambda}^2]^{0,5}} \leq 1$$

$$\phi = 0.5(1 + \alpha(\bar{\lambda} - \bar{\lambda}_0) + \bar{\lambda}^2)$$

$$\bar{\lambda}_0 \text{ is the limiting non-dimensional slenderness defined in Table 6.1 (next slide) or "plateau length"
$$\alpha \text{ is the imperfection factor defined in Table 6.1 (next slide)}$$$$

Column buckling

Choice of buckling curve depends on cross-section, manufacturing route and axis:


Table 6.1: Values for α and $\overline{\lambda}_0$ for flexural buckling (Design Manual and A2:2020)

Buckling mode	Type of member	Axis of	Austenitic & austenitic-ferritic		Ferritic	
Buckling mode		buckling	α	$\overline{\lambda}_0$	α	$\overline{\lambda}_0$
	Cold formed angles and channels	Any	0,76	0,2	0,76	0,2
	Cold formed lipped channels	Any	0,49	0,2	0,49	0,2
	Cold formed rectangular hollow sections	Any	0,49	0,3	0,49	0,2
Flexural	Cold formed circular hollow sections	Any	0,49	0,2	0,49	0,2
Flexural	Hot finished rectangular hollow sections	Any	0,49	0,2	0,34	0,2
	Hot finished circular hollow sections	Any	0,49	0,2	0,34	0,2
		Major	0,49	0,2	0,49	0,2
	Hot rolled sections & welded open or box sections	Minor	0,76	0,2	0,76	0,2
Torsional and torsional-flexural	All members	The values of $lpha$ and $ar{\lambda}_0$ for minor axis flexural buckling apply.			g apply.	

Design example

PUREST

Design example #1

Cold formed square hollow section 80×80×4 Austenitic stainless steel grade 1.4301

h = 79,9 mm	$A = 10,99 \ cm^2$
b = 79,9 mm	$W_{el} = 26,0 \ cm^3$
t = 3,75 mm	$W_{pl} = 30,9 \ cm^3$
L = 2 m	$f_y = 230 N/mm^2$
$r_i = 4,4 mm$	$E = 200\ 000\ N/mm^2$

Step 1 - Cross section properties and material properties

$$\begin{aligned} \mathsf{A}_{c,rolled} = & \left(n_C \, \pi \frac{t}{4} \right) \left(2r_i + t \right) + 4n_C t^2 = \left(4 \times \pi \times \frac{3,75}{4} \right) \times \left(2 \times 4,40 + 3,75 \right) + 4 \times 4 \times 3,75^2 = 373 \, mm^2 \\ \varepsilon_{p0,2} = 0,002 + f_y / E = 0,00315 \\ \varepsilon_u = 1 - f_y / f_u = 0,57 \end{aligned}$$

Design example #1

Step 2 - Induced strain

$$\varepsilon_c = \frac{t}{2(2r_i + t)} = \frac{3,75}{2 \times (2 \times 4,40 + 3,75)} = 0,149$$

$$\varepsilon_f = \left[\frac{t}{900}\right] + \left[\frac{\pi t}{2(b+h-2t)}\right] = \left[\frac{3,75}{900}\right] + \left[\frac{\pi \times 3,75}{2 \times (79,6+79,9-2 \times 3,75)}\right] = 0,043$$

Step 3 - Parameters material model

$$n_p = \frac{\ln(f_y/f_u)}{\ln(\varepsilon_{p0,2}/\varepsilon_u)} = \frac{\ln(230/540)}{\ln(0,00315/0,57)} = 0,164 \qquad \qquad K = \frac{f_y}{\varepsilon_{p0,2}^{n_p}} = \frac{230}{(0,00315)^{0,164}} = 591,6 \, N/mm^2$$

Step 4 - Strength enhancement for flat and corner regions

$$f_{yc} = 0.85K \left(\varepsilon_c + \varepsilon_{p0,2}\right)^{n_p} = 0.85 \times 591.6 \times (0.149 + 0.00315)^{0.164} = 369 \, N/mm^2 \quad and \quad f_y \le f_{yc} \le f_u$$

$$f_{yf} = 0.85K \left(\varepsilon_f + \varepsilon_{p0,2}\right)^{n_p} = 0.85 \times 591.6 \times (0.043 + 0.00315)^{0.164} = 304 \, N/mm^2 \quad and \quad f_y \le f_{yf} \le f_u$$

Step 5 - **Strength enhancement of cold formed sections**

$$f_{ya} = \frac{f_{yc} A_{c,rolled} + f_{yf}(A - A_{c,rolled})}{A} = \frac{369 \times 373 + 304 \times (1099 - 373)}{1099} = \frac{326 N/mm^2}{1099}$$

PUREST: Promotion of new Eurocode rules for structural stainless steels RFCS Dissemination Project 709600 Barbara.rossi@new.ox.ac.uk

Step 6 - Cross section classification

Based on fy:

$$\varepsilon = \left[\frac{235}{f_y}\frac{E}{210\ 000}\right]^{0.5} = \left[\frac{235}{230} \times \frac{200000}{210\ 000}\right]^{0.5} = 0,986$$
$$\frac{c}{t} = \frac{(79,9-3\times3,75)}{3,75} = 18,3 < 32,5 = 33\varepsilon \Rightarrow Class 1$$

Based on fya:

$$\varepsilon = \left[\frac{235}{f_y} \frac{E}{210\ 000}\right]^{0.5} = \left[\frac{235}{326} \times \frac{200000}{210\ 000}\right]^{0.5} = 0.829$$
$$\frac{c}{t} = \frac{(79.9 - 3 \times 3.75)}{3.75} = 18.3 < 27.4 = 33\varepsilon \Rightarrow Class 1$$

Design example #1

Cross-sectional resisting moment

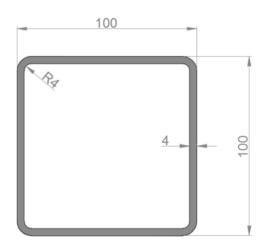
 $M_{c,Rd} = W_{pl} f_y / \gamma_{M0}$

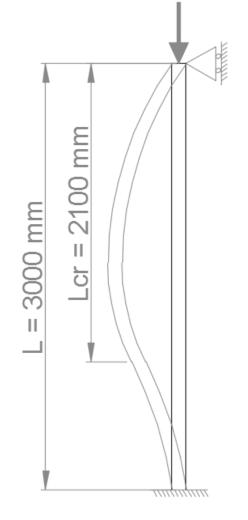
Based on fy:

 $M_{c,Rd} = \frac{30860 \times 230}{1,1} = 6,45 \ kNm$

Based on f_{ya}:

$$M_{c,Rd} = \frac{30860 \times 326}{1,1} = 9,15 \ kNm$$


Conclusion: When the strength enhancement due to cold forming of the cross section is included in calculations an improvement of 42% can be found for the moment resistance.


PUREST: Promotion of new Eurocode rules for structural stainless steels RFCS Dissemination Project 709600 Barbara.rossi@new.ox.ac.uk

Design example #2

Column buckling - Comparison with carbon steel:

Material	Carbon steel S235	Austenitic stainless steel EN 1.4301
f _y	235 N/mm²	230 N/mm²
E	210 000 N/mm²	200 000 N/mm ²

Design example #2

	EC 3-1-1: S235	EC3-1-4, old version: stainless steel	DM and EC3-1-4, with amendments
$A [mm^2]$	1495	1495	1495
$I \ [mm^4]$	2260000	2260000	2260000
$E[N/mm^2]$	210000	200000	200000
$f_y [N/mm^2]$	235	230	230
$f_{ya} [N/mm^2]$	235	323	318
γ _{м0} [−]	1,0	1,1	1,1
γ _{M1} [-]	1,0	1,1	1,1
ε[-] 3	1	0,99	0,99
Class	Class 1	Class 1	Class 1
$N_{c,Rd} [kN]$	351	439	432
$L_{cr} \ [mm]$	2100	2100	2100
$N_{cr} [kN]$	1062	1012	1012
$ar{\lambda}$ [-]	0,575	0,691	0,685
α[-]	0,49	0,49	0,49
$ar{\lambda}_0$ [-]	0,2	0,4	0,3
φ[-]	0,757	0,810	0,829
χ[-]	0,80	0,81	0,77
$N_{b,Rd} [kN]$	281	356	334

PUREST: Promotion of new Eurocode rules for structural stainless steels

RFCS Dissemination Project 709600

Barbara.rossi@new.ox.ac.uk

Design example #2

- Comparison:

	EC 3-1-1: S235	DM and EC3-1-4, with amendments
$f_y [N/mm^2]$	235	230
$f_{ya} \left[N/mm^2 \right]$	235	318
γ _{м0} [-]	1,0	1,1
γ _{M1} [-]	1,0	1,1
$N_{c,Rd} [kN]$	351	432
$N_{b,Rd} [kN]$	281	334

In this example, stainless steel shows a higher resistance to flexural buckling and compression.
⇒ benefits of strain hardening due to the cold worked section.

Life-Cycle Cost Assessment (LCCA) of bridges

PUREST

Rossi B., Marquart S., Rossi G. (2017). Comparative life cycle cost assessment of painted and hot-dip galvanized bridges. *Journal of Environmental Management*, 197, 41-49.

PUREST: Promotion of new Eurocode rules for structural stainless steels RFCS Dissemination Project 709600 Barbara.rossi@new.ox.ac.uk

Stainless steel...

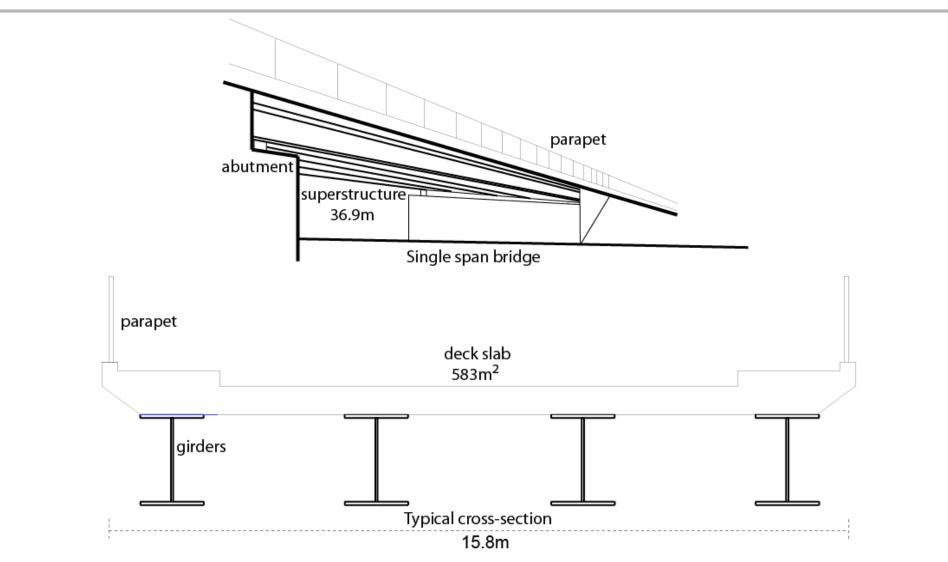
Has proven longevity

- Numerous projects with >80 years of service
- Appropriate specification & maintenance can give >100's years of service

Is indefinitely recyclable

- 92% recaptured at the end of life and made into new metal
- Can also be restored & reused during renovation

Has high scrap content


- 60% international average
- 75 to 90% European and US producers

- Initial cost of stainless steel is high
- And dependent on the cost of alloying elements

But life cycle cost analyses show that stainless steel can be the cheapest option compared to materials requiring more maintenance

Studied bridge

Studied bridge

- Size, weight and surface chosen according to Bridge Inventory data:

Bridge Overall Dimensions		ns Data steel					
Length (m)	Width (m)	Area (m²)	Specific Weight (t/m²)	Steel Weight (t)	Specific Surface (m²/t)	Steel Surface (m²)	Steelwork Data)
36.9	15.8	583	0.18	104.94	14.25	1495	1346

– Material option:

- Option 1: Carbon steel with initial coating including regular maintenance and variable maintenance scenario
- Option 2: Stainless steel

The boundary of the LCCA

- Following the principles described in EN 15643-4:2012 for buildings, the system boundary includes costs related to:
 - Module A i.e. the Cost of products supplied at factory gate ready for construction, all other costs (i.e. purchase of land, professional fees, taxes...) being disregarded ;
 - Module B2 i.e. the Cost of repairs and replacement of minor components/small areas and the cost of Replacement or refurbishment of major systems and components.
 - No Economic impacts and aspects at the End of Life (Modules C1-C4) are presently taken into account
 - Traffic congestion costs are not included in this analysis (as in the sense of EN 15643-4:2012)

Coated steel bridges – Painting system

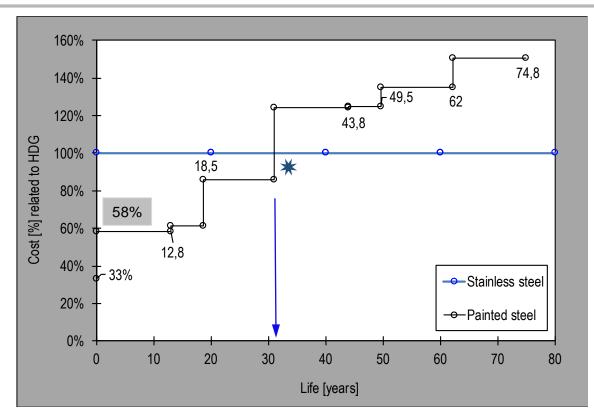
- Step 0 : Initial coating
 - Surface preparation (solvent cleaning, hand & tool cleaning, abrasive blast cleaning, water jetting)
 - Application of coating, commonly:
 - A zinc-rich primer onto the prepared surface (in shop) ⇒ adhesion and corrosion protection
 - Followed by one or more undercoat(s) (in shop) ⇒ barrier function
 - Followed by the finish coat (on site) ⇒ UV-radiation protection and aesthetic
- E.g. typical high performance layer composition (supposed to be used in corrosive environment)

Layer	Binder / Pigment	Thickness (μm)	Total thickness (μm)
Topcoat (Finish)	Aliphatic polyurethane	1 x 50	
Intermediate Coat	Epoxy polyamide	1 x 150	275 measured (mean): 268
Primer	Ethyl silicate / Zinc powder	1 x 75	measured (mean). 200

- Step 1: 'Patch-up' (or 'touch-up') i.e. Preparation on localized areas + application of a compatible new coat
- Step 2: Overcoating i.e. removal of small deteriorated areas or of a whole layer of coating + preparation + new coating of the whole surface
- Step 3: Remove & Replace i.e. All rusted areas and existing coatings are removed + new coating of the whole surface

- Cost data (\$/m²) based on Literature review & Interview with experts:

Reference	Reference Cost range for different painting operations (\$/m ²)											
	Initial Coating		Patch Up			Overcoating			Remove & Replace			
(Mark Yunovich)	17.12	-	53.70	17.12	-	53.70	11.00	-	86.00	43.00	-	215.25
(Jayson L. Helsel, 2008)	11.05	-	44.67	23.96	-	220.34	13.25	-	116.93	27.94	-	258.83
(bauforumstahl, et al., 2013)	17.70	-	36.97	n.a.	-	n.a.	35.79	-	74.97	n.a.	-	n.a.
(Raed El Sarraf)	37.50	-	57.45	82.70	-	122.95	n.a.	-	n.a.	50.50	-	n.a.
(Kwang-Min Lee, 2006)	n.a.	-	n.a.	n.a.	-	n.a.	n.a.	-	n.a.	n.a.	-	236.00
(American Iron and Steel Institute, 2007)	n.a.	-	n.a.	n.a.	-	n.a.	43.06	-	64.58	129.20	-	150.69
Experts (3)	n.a.	-	n.a.	56.95	-	68.34	n.a.	-	n.a.	113.90	-	170.85
Average	20.8	-	48.2	45.1	-	116.3	25.7	-	85.6	72.9	-	206.3
StdDev.	11.5		9.2	30.5		75.5	16.1		22.5	45.5		44.9

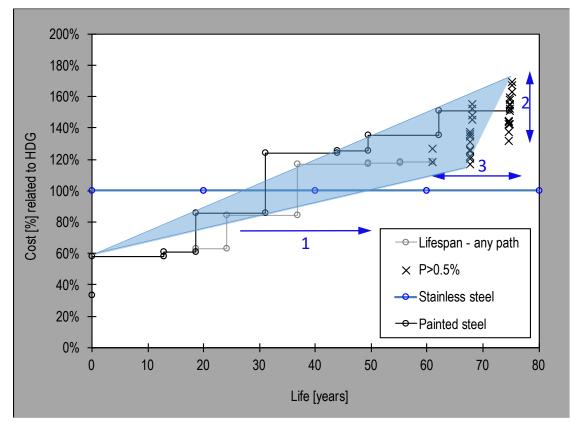

- Service life (year) data based on Literature review & Interview with experts:

Painting system		Syster	Average				
	Maintenance Event	Literature	Experts	xperts Average		Service Life Extension (years)	
	'Touch Up'	15.2	10.5	12.8	3.0	5.7	
	'Overcoating'	17.1	19.3	18.5	2.2	12.5	
	'Remove & Replace'	31.6	30	31.0	8.6	12.8	

Case study 1 – Hypotheses and results

- EO: Initial coating
- E1: 'Patch-up'
- E2: Overcoating
- E3: Remove & Replace
- SCENARIO painted steel: E1/E2/E3-E1/E2/E3
- Touch Up: 5% of the surface
- Overcoating: Preparation of 10% and coating of 100% (already included in the previous costs)

Case study 1 – Hypotheses and results



The ratio C $_{\text{stainless steel}}$ / C $_{\text{carbon steel}}$ is the most important parameter to \nvdash the return on investment time:

Case study 2 – Influence of the scenario

- Maintenance Scenario:
 - EQ: Initial coating
 - E1: 'Patch-up'
 - E2: Overcoating
 - E3: Remove & Replace
- Permutation of « independent events » over the life of the bridge e.g.
 - EO: Initial coating
 - E1: 'Patch-up'
 - E1: 'Patch-up'
 - E2: Overcoating
 - E3: Remove & Replace...
- With probability of occurrence P

Case study 2 – Influence of the scenario

Only for the « most probable » cases (P>0.5%)

1 Investment return: depending on the chosen scenario, investment return happens early or very late but for small lifespan !

2 and 3 Range of LC cost of painted steel bridge: from ~100% for ~60 year's life up to ~170% for ~90 year's life!

<u>http://www.steel-</u> <u>stainless.org/media/1533/dmsss4-french-</u> <u>complete.pdf</u>

Barbara Rossi – Barbara.rossi@new.ox.ac.uk PUREST